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We report on a novel collective state, occurring in globally coupled nonidentical oscillators in the
proximity of the point where the transition from the system’s incoherent to coherent phase converts from
explosive to continuous. In such a state, the oscillators form quantized clusters, where neither their phases
nor their instantaneous frequencies are locked. The oscillators’ instantaneous speeds are different within the
clusters, but they form a characteristic cusped pattern and, more importantly, they behave periodically in
time so that their average values are the same. Given its intrinsic specular nature with respect to the recently
introduced Chimera states, the phase is termed the Bellerophon state. We provide an analytical and
numerical description of Bellerophon states, and furnish practical hints on how to seek them in a variety of
experimental and natural systems.
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The emergence of coherent phases of interacting oscil-
lators is one of the most important phenomena in nature,
and is the foundation for the cooperative functioning of a
wealth of different systems. To gather understanding on the
mechanisms underlying such organizational behavior,
physicists resort to solvable and simplified frameworks,
such as the Kuramoto [1] and Kuramoto-like [2–4] models,
where a variety of collective states can be described: from
full [5,6], to cluster [7,8], to explosive synchronization (ES)
[4,9]. Recently, various types of Chimera states (CSs) (the
coexistence of coherent and incoherent domains, which
occurs, remarkably, for fully identical locally coupled
oscillators) [10,11] have been described and observed in
experiments [12], including the breathing CS [13], the
clustered CS [14], and the multi CS [15].
In this Letter we report on a previously unknown

coherent phase that is proper, instead of globally coupled
oscillators with widely different frequencies, and which
emerges in the proximity of the parameter point where the
transition from the system’s incoherent to coherent behav-
ior converts from explosive to continuous. In the novel
state, the oscillators form quantized clusters, where neither
their phases nor their instantaneous frequencies are locked.
Each of the oscillators’ instantaneous speeds is different
within the clusters, but the instantaneous frequencies form
the same cusped pattern characterizing the average speeds
of CS. The oscillators’s instantaneous frequencies behave
periodically in time so that their average values are the
same. Because of its intrinsic specular nature with respect
to CS, the new phase is termed here the Bellerophon state,
as Bellerophonwas the great herowho, in Greek mythology,
confronted the monster Chimera [16].

We start assuming the framework of a Kuramoto-like
model of N globally coupled phase oscillators, which reads

_θi ¼ ωi þ
κi
N

XN

j¼1

sinðθj − θiÞ; i ¼ 1;…; N; ð1Þ

where the dots denote temporal derivatives and θi, ωi,
and κi are the instantaneous phase, the natural frequency,
and the coupling strength of the ith oscillator, respectively.
The level of synchronization is measured by the order
parameter R ¼ 1

N hj
P

N
j¼1 e

iθj jiT, where j · j and h·iT denote
the module and time average, respectively. The set of
natural frequencies fωig is drawn from a given frequency
distribution (FD) gðωÞ. In the following, two distinct cases
will be illustrated, which have in common the fact that they
sustain both a first- and a second-order-like transition to
synchronization; i.e., the coherent phase may occur (for
proper parameter choices) abruptly. Namely, case (1) cor-
responds to setting κi ¼ κjωij, i.e., to establishing a
correlation between the oscillator’s natural frequency and
the coupling strength; case (2) considers instead two
distinct populations of oscillators (conformists and contra-
rians) [17]), i.e., with κi only taking two values (either
κ1 < 0 or κ2 > 0).
For the sake of illustration, let us start from case (1), and

with a FD that is assumed to be an even function
[gðωÞ ¼ gð−ωÞ], symmetric, and centered at zero. We take
gðωÞ ¼ Δ

2π ½ð1=ðω − ω0Þ2 þ Δ2Þ þ ð1=ðωþ ω0Þ2 þ Δ2Þ� to
be a bimodal Lorentzian distribution, where Δ is the width
parameter (half width at half maximum) of each Lorentzian
and �ω0 are their center frequencies. Notice that, depend-
ing on ω0=Δ, such a FD can be, in fact, either unimodal
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(ω0=Δ ≤
ffiffiffi
3

p
=3) or bimodal (ω0=Δ >

ffiffiffi
3

p
=3). We first

investigate numerically the synchronization transition in
system (1). As the considered FD has two basic parameters
(ω0 and Δ), we fix for simplicity Δ ¼ 1 and let ω0 increase
(which, physically, is tantamount to progressively increas-
ing the distance between the two peaks of the FD). The
results are shown in Fig. 1 [18]. For small values of ω0, an
irreversible, first-order-like, abrupt transition [Fig. 1(a)] is
observed, featuring a characteristic hysteresis area whose
width can be defined as d ¼ κb − κf (with κb and κf being
the critical points for the backward and forward transitions,
respectively). Figures 1(b) and 1(c) show that the width of
the hysteresis area progressively shrinks as ω0 increases.
Eventually, when ω0 is large enough [Figs. 1(d)–1(f)], one
observes a reversible, second-order-like transition.
As long as the FD is symmetric (as in the present

case), the critical point for the backward transition is κb ¼ 2
[3], which is fully verified in our simulations [see
Figs. 1(a)–1(c)]. However, the critical point κf for the
forward transition actually varies with ω0 (at Δ ¼ 1), thus
inducing the hysteresis area to shrink, and leading even-
tually to the observed conversion from an ES to a
continuous transition to synchronization (occurring at
ω0 ≈ 1.7). The analytic solution for κf turns out to be (full
details are contained in the Supplemental Material [19])
κf ¼ ð4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðω0=ΔÞ2

p
Þ. The latter expression tells us

that the critical point for the forward transition is uniquely
determined by the dimensionless parameter ω0=Δ. In
particular, when ω0 ¼ 0, the FD degenerates into the
typical unimodal Lorentzian distribution, and κf ¼ 4 is
predicted, in full agreement with what is reported in
Ref. [3]. Figure 2 gives an account of how remarkably
the analytical predictions are verified by numerical simu-
lations (at all values of Δ and within the entire range
of ω0=Δ).

As seen in Fig. 2, κf decreases monotonically as ω0=Δ
increases, causing (as κb ¼ 2 always) the hysteresis area to
shrink monotonically. When ω0=Δ ¼ ffiffiffi

3
p

, κf ¼ κb ¼ 2,
and the forward and backward transition points almost
coincide [see Fig. 1(c)]. As ω0=Δ gradually exceeds

ffiffiffi
3

p
,

the hysteresis area does not immediately disappear [see the
inset of Fig. 1(d)]. Actually, at ω0=Δ ¼ ffiffiffi

3
p

, a Hopf
bifurcation occurs during both the forward and backward
processes, and both bifurcations are continuous. For the
forward direction, the system first undergoes a continuous
transition, followed by an ES transition (as κ further
increases). A similar scenario of transitions characterizes
also the backward direction. An initial parameter regime
ω0=Δ >

ffiffiffi
3

p
then exists, where the system undergoes the

cascade of one continuous and one explosive transition
during both forward and backward continuity. A further
increase of ω0=Δ causes the hysteresis area to eventually
disappear [Figs. 1(e) and 1(f)], leading to a situation where
only continuous transitions occur in the system. It is in this
latter regime, i.e., close to a tricritical point in parameter
space that novel coherent phases, the Bellerophon states,
emerge in the path leading the system from its unsynchron-
ized to its synchronized behavior.
The following step involves characterizing such a novel

state, and discussing the differences with other typical
coherent states of Kuramoto-type models. For the sake of
exemplification, we take the case of ω0=Δ ¼ 3 [Fig. 1(f)].
Here, the system exhibits two continuous transitions at
κ1c ¼ 4=

ffiffiffiffiffi
10

p
≈ 1.26 and κ2c ¼ 2, respectively. Therefore,

three parameter regimes can be identified: κ < κ1c (I), κ1c <
κ < κ2c (II), and κ > κ2c (III). In regime I, the coupling
strength is small, and the system features the trivial
incoherent state. In regime III, the coupling is so strong
that the system goes into the fully synchronized state, in
which all oscillators split into two fully synchronized
clusters. The Bellerophon phases are steady states

FIG. 1. From an explosive to a continuous transition. R vs κ for
model (1). Δ ¼ 1 and ω0 ¼ 0.5 (a), 1.5 (b), 1.74 (c), 2.0 (d), 2.5
(e), and 3.0 (f).
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FIG. 2. Critical point for the forward transition. κf vs ω0=Δ.
The black curve corresponds to the analytic solution (see the
Supplemental Material [19] for details). The purple dashed line
marks the backward transition point. The theoretical prediction
and the numerical results coincide perfectly.
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occurring in the middle regime II, i.e., during the path to
full synchronization. In Fig. 3, four typical phases are
illustrated, corresponding to the κ values denoted by letters
A, B, C, and D in Fig. 1(f). They are characterized by three
quantities: the instantaneous phases θi, the instantaneous
(angular) speed _θi, and the average speed h_θii (i.e., the
oscillators’ effective frequencies), where the bracket stands
for a long time average.
In Fig. 3(a), κ ¼ 1.28. As κ just exceeds κ1c ¼ 1.26, two

small symmetric clusters emerge, whose average speeds are
equal to each other in magnitude, but opposite in sign. The
oscillators in the two clusters rotate with the same average
speed (but different instantaneous phases and frequencies).
At κ ¼ 1.60 [Fig. 3(b)], a multiclustered state emerges.
The number of clusters increases in pairs as κ increases,
each pair containing oscillators that are symmetric in terms
of their natural frequencies. The oscillators inside each
cluster have the same average speed [see the staircase
structure of Fig. 3(b2)], but different instantaneous frequen-
cies [Fig. 3(b3)]. The clusters coexist with drifting oscil-
lators that are not synchronized. In Fig. 3(c), κ ¼ 1.80.
This is also a Bellerophon state, but different from that of
Fig. 3(b). The coherent clusters now occupy almost all the
range of natural frequencies, except for a small narrow zone
around the central frequency; the increase of κ results in all
drifting oscillators being gradually recruited into either one
of the clusters. Finally, Fig. 3(d) (κ ¼ 2.10) refers to the
fully coherent phase, where two giant clusters are formed.
In each cluster, the oscillators with positive or negative
frequencies coincide with each other totally: they feature
now the same instantaneous speed, so that the whole system
behaves like two giant oscillators.

Much better insight is gathered by inspecting the system’s
macroscopic andmicroscopic details. Figure 4(a) reveals that
the staircases of coherent clusters at κ ¼ 1.60 satisfy in fact a
certain rule: they are quantized, and can be expressed as
�ð2n − 1ÞΩ1; n ¼ 1; 2;…, [20], where Ω1 is the lowest
frequency, i.e., the principle (or base) system’s frequency.
Accordingly, depending on their multiple ofΩ1, the clusters
can be namedC1; C3; C5;…, respectively. The key, and also
subtle, point here is that, although the average speeds of the
oscillators inside each cluster are equal to each other, their
instantaneous speeds are generally different and quite
heterogeneous. Furthermore, the instantaneous speeds of
the oscillators in each cluster are correlated and form the
characteristic cusped pattern [Figs. 3(b3) and 3(c3)] analo-
gous to that featured by the average frequencies of the
oscillators within theCS.We emphasize that this similarity is
between the instantaneous frequencies in the Bellerophon
state and the average frequencies in CS. Figure 4(b) shows
that the instantaneous speeds of the oscillators inside the
same cluster evolve periodically, but different oscillators
follow different periodic patterns. In other words, the
instantaneous speed for each oscillator evolves uniquely.
This makes Bellerophon states essentially different with
respect to other coherent states observed in Kuramoto-like
models, such as the partially coherent state [6], the standing
wave state [21,22], the traveling wave state [21,23], and the
CS [10,11], where the oscillators inside the coherent cluster

FIG. 3. Bellerophon states. Snapshots of the instantaneous
phase θi (upper plots), the average speed h_θii (middle plots),
and the instantaneous speed _θi (lower plots) versus the natural
frequencies fωig of the oscillators. κ ¼ 1.28 (a), 1.60 (b), 1.80
(c), and 2.10 (d) (the fully synchronized state). All other
parameters are specified in the text. Panels (a)–(c) refer to
Bellerophon states.

FIG. 4. The state of Fig. 3(b). (a) The average speeds of the
coherent clusters. They correspond to odd-numbered multiples of
the principle frequency Ω1. (b) Time series of the instantaneous
speeds of the clustered oscillators. In the panel, two sample
oscillators are arbitrarily chosen for clusters C1 (top), C3

(middle), and C5 (bottom). The straight lines mark the average
speed. (c) Order parameters for all oscillators with positive (blue
oval) and negative (red oval) frequency, and order parameter for
all oscillators (green lines). The insets are the time series of the
global order parameter RðtÞ and ΨðtÞ, which are typically
oscillatory. (d) Time series of the instantaneous phases corre-
sponding to (b).
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are typically frequency locked. Moreover, even though the
instantaneous speed of the clusters’ oscillators varies non-
uniformly during one period (particularly for those clusters
with large n), the average speeds during one period for all
oscillators in a certain cluster turn out to be the same, i.e., an
odd-numbered multiple of Ω1 in this case. As the instanta-
neous speed characterizes the rotations of the oscillators
along the unit circle, a very interesting collective motion of
the oscillators is observed [Fig. 4(d)]: during one period
T1 ¼ 1=Ω1, the oscillators in C1 all perform one loop along
the unit circle, and in the meantime, the oscillators inC3 and
C5 rotate three loops and five loops, respectively. In analogy,
the oscillators inC2n−1will perform 2n − 1 loops. Compared
with Fig. 4(b), we further find that during one loop, the
instantaneous speeds for all coherent oscillators experience
two periods; i.e., each oscillator repeats its motion during the
two half periods. In Fig. 4(a), we report the local value of the
order parameter (i.e., that contributed by only those oscil-
lators in a certain cluster) in the complex plane, forC1,C3 and
C5. Because of the complicated phase relationships among
the oscillators in each cluster [see Fig. 4(d)], the resulting
value is typically periodic or quasiperiodic, and follows a
complicated orbit. Essentially, each cluster can be seen as a
giant oscillator, with properties described by the local order
parameter. Figure 4(c) reports the order parameters for all
positive and negative frequencies (including the drifting
oscillators). In phase space, orbits appear as two smeared
ovals, reflecting the quasiperiodic motion of the total order
parameter, as shown in the insets of Fig. 4(c). To aid in
understanding the Bellerophon states’ features, the
Supplemental Material [19] contains evidence of configu-
rations that include also negative instantaneous phases,
together with several animated movies that help visualizing
the evolution of the phases, speeds, and motions of the
oscillators on the unit circle.
Let us now start to discuss on the conditions needed for

the emergence of Bellerophon states. First of all, the states
appear to be robust under the change of the FD, and in
particular under relaxing the hypothesis of a symmetric
distribution. Indeed, one can consider the same case (1),
but under the choice of an asymmetric Lorentzian
distribution. Precisely, gðωÞ is now taken to be gðωÞ ¼
Δ=ðπ½ðω − ω0Þ2 þ Δ2�Þ. When keeping Δ ¼ 1 as a con-
stant, and changing ω0 (in order to shift the frequency
distribution along the positive axis), the typical state that
emerges is illustrated in Fig. 5(a).
Furthermore, a correlation between the oscillator’s natural

frequency and the coupling strength [inherent to case (1)]
seems not to be a necessary condition either. One can indeed
consider Eq. (1) under case (2), i.e., in the presence of two
populations of oscillators, with κi only taking two values
(either κ1 < 0 or κ2 > 0). In this case, the natural frequencies
fωig are taken from a symmetric distribution centered at
zero, the Lorentzian distribution gðωÞ ¼ Δ=½πðω2 þ Δ2Þ�.
Now, the oscillators in the ensemble can be generally divided

into two groups: those with positive κi (which will behave
like conformists attempting to follow theglobal rhythmof the
system), and those with negative κi, which will tend to act as
contrarians (always trying to oppose the system’s global
trend) [17]). In numerical simulations, one starts from an
incoherent statewhereonly the contrarianoscillators interact,
and gradually flips a number of contrarians into conformists.
In doing so, various strategies can be adopted as rules for the
flipping procedure. Three strategies to change contrarians
into conformists have been adopted by us. In strategy
(i) contrarians are randomly chosen to be flipped into
conformists; in strategy (ii) contrarians are ranked according
to the absolute value of their natural frequencies jωij, and
then flipped into conformists from the largest jωij to the
smallest, i.e., the coupling strength of the ith oscillators will
be κi ¼ κ2 if jωij > ω0 and κi ¼ κ1 otherwise. Denote the
proportion of conformists in the system as p then
1 − p ¼ R

ω0
−ω0

gðωÞdω; strategy (iii) is the opposite of (ii),
i.e., κi ¼ κ2 if jωij < ω0 and κi ¼ κ1 otherwise, with
p ¼ R

ω0
−ω0

gðωÞdω. In all the three cases, the emerging
scenario is qualitatively the same. While the full analytical
treatment of the three cases will be presented elsewhere [24],
the numerical results of case (iii) are reported in Fig. 5(b)
where one can see that, as the proportion of conformists
p ¼ R

ω0
−ω0

gðωÞdω increases, the system manifests
Bellerophon states.
In conclusion, we have provided evidence of a novel,

asymptotic, phase of globally coupled oscillators: the
Bellerophon state, which differs essentially from all coher-
ent phases described so far in coupled oscillator models.
Within the novel state, the oscillators form quantized
clusters, where neither their phases nor their instantaneous
frequencies are locked. The oscillators’ instantaneous
speeds are different, but they behave periodically, and
most importantly, their average speed values are the same.
Our results support the hypothesis that Bellerophon states
are generic, and occur in globally coupled nonidentical
oscillators, irrespectively of the symmetric nature of the
FD, or of the specific oscillators’ coupling scheme. The
required condition for the emergence of these states seems

FIG. 5. Bellerophon states in different frequency arrangements
and models. (a) An asymmetric frequency distribution, and (b) a
model including conformists and contrarians. This figure caption
is the same as that in Fig. 3, and the legends indicate the values of
the used parameters. See the text for the model and frequency
specifications.

PRL 117, 204101 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

11 NOVEMBER 2016

204101-4



to be a model system for which continuous and abrupt
transitions to synchronization coexist, in such a way that a
setting can be chosen in the relative proximity of the
parameter point where the switching in the nature of
the synchronization transition (from second-order-like to
explosive) occurs. The range of parameters over which the
new states are observed turns out to be pretty large, and
therefore one actually does not even need to be in the
immediate vicinity of such a tricritical point. While
revealing functional relationships within each cluster will
certainly be a mathematical challenge for the future, our
analytical and numerical description will certainly help
physicists seek Bellerophon states in a variety of exper-
imental and natural systems.
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